A látás abból áll. Idézetek - látás

A látás abból áll

A csapok a látható fénytartomány bizonyos szeleteire érzékenyek, viszont csak a beérkező fény mennyiségéről adnak információt az idegrendszernek, a beérkező fény hullámhosszáról nem. Az emberek számára a látható színtartományt hozzávetőlegesen a - nm hullámhosszú elektromágneses sugárzás jelenti.

Ezt a színtartományt az emberi szem három különböző típusú csappal fedi le, más fajoknál mind a látható színtartomány, mind a csapok száma eltérő. Példának okáért, egy piros szoknya nem piros színt sugároz ki. Inkább azt mondhatnánk, hogy elnyeli az ember számára látható fénytartomány minden frekvenciájátkivéve a piros érzetet keltő frekvenciákat. Egy tárgy színe fajspecifikus szubjektív élmény, nem pedig a tárgy fizikai tulajdonsága.

A színek egységei[ szerkesztés ] Isaac Newton volt az első, aki a prizmán áthaladó, a spektrális színekre vagyis a szivárvány színeire bomló napfénynyaláb jelenségével először érdemben foglalkozott. Megmutatta, hogy ha a spektrum színei közül kiválasztunk egyet például a sárgátés hyperopia 10 betű egy megfelelő színtartományra sárga esetén ez nagyjából a nm-es tartomány kék hogyan lehet a legjobban kezelni a látást, akkor fehéret látunk.

Bármely két spektrális összetevőt, melyekről elmondható, hogy ha összeadjuk őket, fehéret kapunk, a látás abból áll kiegészítő a látás abból áll.

romló közeli látás

Egy átlagos emberi szem több száz színárnyalatot képes megkülönböztetni, melyek a spektrális színek különböző arányú összegéből képződnek. Newton hét spektrális alapszínt feltételezett a tudomány mai álláspontja szerint helytelenül abból kiindulva, hogy a a látás abból áll és a hallás szoros kapcsolatban áll a zenei skála is oktávonként hét hangból áll.

Emberi szem

A hét ék alakú körcikk mindegyike egy-egy spektrális színt ábrázol, ezekre Newton többféle szabályt is kidolgozott. Newton hét körcikke azt a vélekedését tükrözi, miszerint hét különálló tiszta színnek kell léteznie. Ma már tudjuk, hogy ez nem így van, ezért a Newton féle színkört Johannes Itten módosította úgy, hogy a komplemeter színpárok egymással szemben legyenek, és a kör közepére pedig a fehér szín kerüljön.

Emberi szem elölnézete Az Európai Molekuláris Biológiai Laboratórium EMBL heidelbergi tudósai bizonyítékokat találtak arra, hogyan fejlődött ki a gerincesek — és így az emberek — szeme. Az emberek távoli állati őseiben kétféle, fényre érzékeny sejtet találtak, a rhabdomérákat ezek a rovarok összetett szemének fényérzékeny képződményei és a fényérzékelő sejteket. Míg a legtöbb állatban a rhabdomérákból fejlődtek ki a szem sejtjei és a csillószerű fényérzékelő sejtek eredeti helyükön, az agyban maradtak, a gerincesek és így az emberek szemének fejlődése más utat követett: a csillószerű fényérzékeny sejtek látósejtekké váltak.

Ezen a színkörön már látható, hogy a színek nem neveik, hanem hullámhosszuk szerint rendezettek, de nem egyformán oszlanak el a színkörön mivel vannak olyan hullámhosszok, amelyeknek nincsenek komplementer kiegészítőik. Háromszín-elmélet[ szerkesztés ] Newtont követően - és Newton elképzelésével szemben - egyre több olyan elmélet látott napvilágot, mely szerint három megfelelően kiválasztott alapszínből valamennyi szín kikeverhető.

Thomas Young angol orvos és fizikus ben kifejtette, hogy a színlátás háromszín természetének élettani alapjai vannak, és a színérzékelés a szemben elhelyezkedő háromféle receptor ingerlési mintázatainak eredményeként jön létre. A három alapvető színérzéklet, a piros, a zöld és az ibolyaszín az idegrendszer elkülönült elemei. Hermann Ludwig von Helmholtz Young elméletét ötven évvel később Hermann Ludwig von Helmholtz fejlesztette tovább, és Young-Helmholtz-elméletként, illetve háromszín-elméletként vált ismertté.

Helmholtz szerint a szemben háromféle, ma már csapokként ismert színreceptor van, melyek a látható fény hosszú pirosközepes zöld vagy rövid kék hullámhosszúságú tartományába eső fényre érzékenyek. A három receptor együtt határozza meg a színérzékelést. A látás abból áll szerkesztés ] Ewald Hering ben terjesztette elő ellenszínelméletét, mely szerint négy alapszín létezik: kékvöröszöld és a sárga.

A vörös és a zöld, a sárga és a kék ellentétes színek, ugyanis nem észlelhetők egyszerre. Sohasem látunk vöröseszöldet vagy sárgáskéket, hiszen a vörös és zöld keverékét sárgának, a kék és a sárga keverékét pedig fehérnek látjuk. Hering szerint látórendszerünk kétféle színérzékeny egységet tartalmaz, az egyik a zöldre vagy a vörösre, a másik a kékre vagy a sárgára válaszol. A két egység másképp kezeli a színeket: a vörös-zöld rendszer például növeli aktivitását vörös szín hatására, zöld színnél pedig csökkenti.

látás eltérések nélkül

A sárga-kék egység növeli válaszgyakoriságát, ha kék inger stimulálja, és csökkenti, ha sárga. Hering elmélete a negatív utókép jelenségére is magyarázatot ad. Ha vörös képet nézünk és kifárasztjuk a rendszer vörös válaszát, akkor a vörös-zöld egység zöld összetevője nagyobb aktivitást fog mutatni, ha fehér felületre nézünk zöld képet látunk.

Tehát az ellenszínt észleljük, ha egy a látás abból áll egy bizonyos színárnyalatú ingernek vagyunk kitéve. Ez megfelel annak az elképzelésnek, miszerint a látórendszer bizonyos színeket ellentétes párként kezel. A háromszín-elmélet és az ellenszínelmélet a látás abból áll éven keresztül versengett egymással, míg fel nem vetették, hogy egyesíthetők egy olyan kétszintű elméletben, melyben a háromszín-elmélet a receptorok szintjén, az ellenszínelmélet pedig magasabb szinteken érvényes.

A színek három dimenziója[ szerkesztés ] Az észlelt színeket általában három dimenzió mentén jellemezzük. A színárnyalat a színek nevével leírt minőségre utal, azt a tulajdonságot jelöli, amely elkülöníti például a vöröset, a zöldet, a kéket, stb. Az élénkség a színes felületről visszaverődő fény mennyiségét jelzi. A telítettség a fény tisztaságát jelenti.

A látás abból áll. Idézetek - látás

A telített színek nem tartalmaznak szürkét, a telítetlen színek - például a rózsaszín - a vörös és a fehér keverékének tűnnek. A színészlelés mechanizmusa[ szerkesztés ] Newton megmutatta, hogy a fény és a szín összetett kapcsolatban vannak egymással, és hogy különböző színek, hullámhosszak összetétele ugyanahhoz a színélményhez vezet. Ezen színélmények kialakítását az élőlények idegrendszere több lépésben állítja elő.

ami mínusz 7 látást jelent

Első lépésben a csap típusú vizuális receptorok fényérzékeny pigmentjei végzik a feldolgozást, majd ezek információit a retinális ganglionok továbbítják az oldalsó genikulátus maghoz corpus geniculatum lateralea végső színélményt pedig még magasabb szintű vizuális központok adják.

Az egyes fázisokban megfigyelhető észlelési állapotokra egy-egy, egymást kiegészítő a látás abból áll létezik. A trichromatikus elmélet a retinális feldolgozást modellezi, az opponens elmélet pedig a corpus geniculatum laterale neuronjainak működését írja le. Az emberi látás során a fény hullámhosszát először három, spektrálisan széles és egymást nagymértékben átfedő csapfotopigment elemzi. Ezek eredményei azután a kromatikus és az akromatikus csatornákat táplálja.

Monokromáttól a trikromát látásig[ szerkesztés ] A fotopigmentek különbséget tesznek egyes hullámhosszok között úgy, hogy bizonyos hullámhosszú fényeket hatékonyabban nyelnek el, de bármilyen hullámhosszú is az elnyelt fény, ugyanazt az eseményt idézi elő a vizuális receptorban. Vagyis a receptor válaszát csupán az elnyelt fény mennyisége határozza meg, nem szolgál ost látási teszt az elnyelt fény hullámhosszáról.

Ez az univariancia elve. Az a vizuális hipertrófia dénás látáskezelés szemet monokromátnak nevezzük. Félhomályban minden ember monokromát látásúmert a csap típusú receptorai nem reagálnak a gyenge fényre, csak a pálcikái segítségével építi fel idegrendszere a látott képet, ami ennek következtében a látás abból áll lesz. A két típusú fotopigmenttel rendelkező dikromát szem várhatóan jobban disztingvál, mivel a kétpigmentes rendszerben nem egy, hanem kétféleképpen nyilvánul meg az elnyelt energia.

A horizontális sejtek a fotoreceptorok idegvégződései által alkotott rétegben, az úgynevezett külső szinaptikus rétegben teremtenek kapcsolatokat a szomszédos sejtek között, az amakrin sejtek pedig a bipoláris és ganglion sejtek közé ékelődve töltenek be hasonló funkciót. A fotoreceptorok koncentrikus felépítésű, ganglion sejtekhez kapcsolódó receptormezőkbe rendeződnek, melyek akár át is lapolódhatnak egymáson. A pálcikák nagyméretű, homogén mezőket alkotnak, közvetlen kapcsolatban pedig csak egyféle bipoláris sejttel állnak. Egy-egy pálcikákat összekapcsoló bipoláris sejthez hozzávetőlegesen receptor tartozik.

Az egyes fotopigmentek válasza ebben az esetben is attól függ, milyen a fényelnyelési karakterisztikája a pigmentnek az adott hullámhosszú fényre. Így bármely hullámhossz egy válaszpárt fog kiváltani, ami jelen esetben is függ a fényerősségtőlellenben arányaik függetlenek ettől hiszen mindkét válasz a fényerősség hatására ugyanolyan mértékben változik, ezért hányadosuk nem függ a fényerősség -változástól.

Látásromlás

Így a bikromát szem néhány hullámhossz információt ki tud vonni a látás abból áll fényből. Ellenben könnyen összezavarható is, hiszen egy adott válaszpár aránya elérhető különféle hullámhosszú fények összetételével. Három csappigment esetén minden hullámhossz egy válaszhármast generál, a különböző csappigmentek fényelnyelési képességének megfelelően.

Ideális karakterisztikával rendelkező fotopigmenthármas esetén ezek válasza csak bizonyos hullámhossz összetételű fénnyel érhető el. Egy ilyen fotopigmenthármast tartalmazó szemet trikromátnak nevezünk, ilyen az emberi szem is. Ezt — vagyis, hogy a színészlelés három eltérő pigment válaszával kezdődik az ember esetén is - Young-Heimholtz elméletnek nevezzük, alkotóik után: Hermann von Helmholtz német pszichológus és Thomas Young angol orvos egyszerre alkották meg a fenti teóriát.

Csappigmentek[ szerkesztés ] Az emberi szemben alapvetően három eltérő csaptípus létezik, [5] melyek fényelnyelési tulajdonságát mikro-spektrofotometriával térképezték fel egy csapot adott hullámhosszú fénysugárral ingerelve meghatározhatjuk, hogy mennyi fény abszorbeálódik a sugárzottból. Minden pigmenttípus egy bizonyos hullámhosszú fényre a legérzékenyebb, az ember három csapja esetén ez megközelítőlegés nm -nél van. Az érzékenységi maximumok szerint három csaptípust különítünk el: a rövidhullám-érzékenyeket S csapoka középhullám-érzékenyeket M csapok és a hosszúhullám-érzékenyeket L csapok.

Egy adott típusú csap a hullámhosszak széles tartományát nyeli el, de ezek a tartományok — különösen az M és az L csapok esetén — erősen átfedik egymást.

A látás abból áll

Ezért a gyakran emlegetett elmélet, miszerint adott csaptípus csak egy adott színre érzékeny S csapok a kékre, M csapok a zöldre, L csapok a vörösrehelytelen.

Az S csapok kis számban vannak jelen a foveán, majd hirtelen a maximális koncentrációjukat érik el, gyenge látás és úszás a látógödörtől a látás abból áll centralis, az éleslátásért felelős terület távolodva — az M és L csapokhoz hasonlóan — számuk körben csökken a középpontól távolodva. Az L és M csapok a látógödörben vannak nagy számban. Kromatikus és az akromatikus rendszer[ szerkesztés ] Az akromatikus és kromatikus csatornák A három csaptípustól eredő jeleket válaszhármasokat egy akromatikus és két kromatikus rendszer dolgozza fel.

A képen látható nyilak az egyes csatornatípusok fényelnyelése során keletkező jelet mutatják.